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Cryptocurrencies
Cryptography is used to:

provide a mechanism for securely encoding the rules of a cryptocurrency system in the 
system itself.

prevent tampering and equivocation.

encode the rules for creation of new units of the currency into a mathematical protocol.



Cryptographic Hash Functions
Hash function:
◦ Takes any string as input
◦ Produces a fixed-size output
◦ Is efficiently computable (running time that is O(n))

Properties of a cryptographically secure hash function:
◦ Collision-resistance
◦ Hiding
◦ Puzzle-friendly



Property 1: Collision-resistance

It is infeasible to find two values, x and y , 
such that:

x ≠ y , yet H(x) = H(y) .



…but collisions exist



Finding a collision
pick 2256 + 1 distinct values and compute the hashes of each of them.

In fact, if we randomly choose just 2130 + 1 inputs, it turns out there’s a 99.8% chance that at 
least two of them are going to collide.

We can find a collision by only examining roughly the square root of the number of possible 
outputs.



…but
It takes a very, very long time to find a collision with this generic collision detection algorithm.

For 256-bit output compute the hash function
2256 + 1 times in the worst case
2128 times on average

If a computer calculates 10,000 hashes per second, it would take more than one octillion (1027) years 
to calculate 2128 hashes!

If every computer ever made by humanity was computing since the beginning of the entire universe, 
up to now, the odds that they would have found a collision is still infinitesimally small



Non-generic collision detection
H(x) = x mod 2256

üaccepts inputs of any length

üreturns a fixed sized output (256 bits)

üis efficiently computable

But this function also has an efficient method for finding a collision.

check the function here

https://www.wolframalpha.com/input/?i=x+mod2%5e256


Collision resistance
There are no hash functions proven to be collision-resistant.

We use hash functions that people have not yet succeeded on finding collisions.

MD5 is not one of them anymore!



Application: Hash as message digests
If we know H(x) = H(y), it is safe to assume that x =y 

SecureBox: allows users to upload files and ensure their integrity when they download 
them.

Verify downloads on the internet, example

https://ubuntu.com/download/desktop/thank-you?version=20.04.2.0&architecture=amd64


Property 2: Hiding
Given H(x), it is infeasible to find x

it needs to be the case that there’s no value of x which is particularly likely

H(“heads”)

H(“tails”)

Easy to find x



Property 2: Hiding
x has to be chosen from a set that’s very spread out

Solution: we can hide an input that’s not spread out by concatenating it with another input 
that is spread out.

A hash function H is hiding if: when a secret value r is chosen from a probability distribution 
that has high min-entropy , then given H(r ‖ x) it is infeasible to find x.

High min-entropy: no particular value is chosen with more than negligible probability.



Application: Commitments
com := commit( msg, nonce )  publish com

verify( com, msg, nonce )  publish msg and nonce
◦ true if com == commit( msg , nonce ) 
◦ false otherwise

Security properties: 

Hiding: Given com, infeasible to find msg

Binding: Infeasible to find msg != msg’ such that 
commit(msg,nonce)==commit(msg’,nonce’)



Application: Commitments
Implementation: 

commit( msg, nonce) := H( nonce ‖ msg ) where nonce is a random 256-bit value

Hiding : Given H( nonce ‖ msg) , it is infeasible to find msg

Binding : It is infeasible to find two pairs (msg, nonce) and (msg’, nonce’) such that msg ≠ 
msg’ and H( nonce ‖ msg ) == H( nonce’ ‖ msg’ )



Property 3: Puzzle friendliness
For every possible n-bit output value y , 

if k is chosen from a distribution with high min-entropy, 

then it is infeasible to find x such that H(k ‖ x) = y

If someone wants to target the hash function to come out to some particular output value y 
, that if there’s part of the input that is chosen in a suitably randomized way, it’s very difficult 
to find another value that hits exactly that target.



Application: Search puzzle
Search puzzle. A search puzzle consists of

a hash function, H ,

a value, id (which we call the puzzle-ID), chosen from a high min-entropy distribution

and a target set Y

A solution to this puzzle is a value, x , such that 

H( id ‖ x ) ∈ Y .



Application: Search puzzle
If Y is the set of all n-bit strings the puzzle is trivial.

If Y has only 1 element the puzzle is maximally hard.

If a search puzzle is puzzle-friendly, 

there’s no solving strategy for this puzzle which is much better 

than just trying random values of x .

Important in mining!



SHA-256 hash 
function

We require that our hash 
functions work on inputs of 
arbitrary length.

Merkle-Damgard transform: 
convert a hash function that 
works on fixed-length inputs 
into a hash function that 
works on arbitrary-length 
inputs



SHA-256 hash 
function

Theorem: if c is collision-
resistant, then SHA-256 is 
collision-resistant



Hash Pointers and Data Structures
A hash pointer is:

a pointer to where some information is stored and

a cryptographic hash of the information.

A regular pointer gives you a way to retrieve the 
information

a hash pointer also gives you a way to verify that the 
information hasn’t changed.



Hash Pointers and Data Structures
We can use hash pointers to build all kinds of data 
structures.

◦ linked list 
◦ binary search trees

A block chain is a linked list that is built with hash pointers 
instead of pointers.

Merkle-Damgard

construction



Hash Pointers 
and Data 
Structures

A use case for a block chain is 
a tamper-evident log.

A log data structure that 
stores a bunch of data, and 
allows us to append data onto 
the end of the log.



Merkle trees



Merkle trees - Proof of Membership
Someone wants to prove that a certain data block is a 
member of the Merkle Tree.

Only about log(n) items need to be shown.

It takes about log(n) time for us to verify it.



Merkle trees - Proof of non-Membership
With a sorted Merkle tree, it becomes possible to verify non-membership in a logarithmic time and 
space.

Show a path to the item that’s just before where the item in question would be.

Show the path to the item that is just after where it would be.

If these two items are consecutive in the tree, then this serves as a proof that the item in question is 
not included.

We can use hash pointers in any pointer-based data structure that has no cycles.



Digital Signatures
A digital signature is supposed to be the digital analog to a handwritten signature on paper.

Its properties: 

1. Only you can make your signature, but anyone who sees it can verify that it’s valid. 

2. The signature is tied to a particular document so that the signature cannot be used to 
indicate your agreement or endorsement of a different document.



API for Digital Signatures
(sk, pk) := generateKeys( keysize )

sig := sign( sk , message )

isValid := verify( pk , message , sig )



Properties of Digital Signatures
Valid signatures must verify

verify ( pk , message , sign ( sk , message )) == true

Signatures are existentially unforgeable, it’s computationally infeasible to forge signatures. 
An adversary who:
◦ knows your public key 
◦ gets to see your signatures on some other messages 

can’t forge your signature on a new message



The unforgeability game



Practical Concerns
Algorithms are randomized

we need good source of randomness

Limit on the message size

use Hash(message) rather than message

A trick: signing the hash pointer the signature covers that whole structure.



Digital Signatures
Bitcoin uses a particular digital signature scheme that’s called the Elliptic Curve Digital 
Signature Algorithm (ECDSA). 

A U.S. government standard.

Bitcoin uses ECDSA over the standard elliptic curve “secp256k1” which is estimated to 
provide 128 bits of security.

it is as difficult to break this algorithm as performing 2128 symmetric-key 
cryptographic operations



Public Keys as Identities
If you see a message with a signature that verifies correctly under a public key, pk , then you 
can think of this as pk is saying the message.

In order for someone to speak for the identity pk , they must know the corresponding 
secret key, sk .



How to Make a New Identity
Create a new, random key-pair (sk,pk)
◦ pk is the public “name” you can use
◦ sk lets you “speak for” this new identity

You control the identity, because only you know the sk.



Decentralized Identity Management
Anybody can make a new identity at any time,

you can make as many as you want!

There is no central point of coordination.

These identities are called “addresses” in Bitcoin.



A Simple Cryptocurrency – The 
GoofyCoin
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A Simple Cryptocurrency – The 
GoofyCoin

Double Spending Attack!



A Simple Cryptocurrency – The 
ScroogeCoin



A Simple Cryptocurrency – The 
ScroogeCoin

CreateCoins transaction creates new coins
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A Simple Cryptocurrency – The 
ScroogeCoin

Immutable coins.

Coins cannot be transferred, subdivided or combined.

Same effect by:
◦ Create new transactions
◦ Consume your coin
◦ Pay out two new coins to yourself



A Simple Cryptocurrency – The 
ScroogeCoin



A Simple Cryptocurrency – The 
ScroogeCoin

The problems to be solved:

Users must agree upon a single published block chain as the history of which transactions have 
happened. 

They must all agree on which transactions are valid, and which transactions have actually 
occurred. 

They also need to be able to assign IDs to things in a decentralized way. 

The minting of new coins needs to be controlled in a decentralized way.



Note: most of the slides used in this course are 
derived from those available for the book “Bitcoins 
and Cryptocurrencies Technologies – A 
Comprehensive Introduction”, Arvind Narayanan, 
Joseph Bonneau, Edward Felten, Andrew Miller & 
Steven Goldfeder, 2016, Princeton University Press.

CS 4593/6463 – Bitcoins and Cryptocurrencies, Prof. Murtuza
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