
UTXO vs Account Based
Model

UTXO

Transactions are created by
consuming existing UTXOs
and producing new ones in
their place.

Any input bitcoins not
redeemed in an output is
considered a transaction fee.

UTXO

The global state of Bitcoin is
all the currently unspent
UTXO sets.

UTXO

Each token owner transfers a
coin they own to someone
else by:

Generating the hash of a
previous transaction and the
public key (address) of the
next owner.

Digitally signing the hash.

Adding these to the end of
the coin

UTXO
On the protocol layer there are no accounts or wallets.

Coins are stored as a list of UTXOs.

Another way of referring to a balance of coins (e.g. BTC) controlled by a specific address.

A user’s “balance” in the system is thus the total value of the unspent UTXO set for which
the user has a private key capable of producing a valid signature.

UTXO - Validity Constraints

1. Every referenced input must be valid and not yet spent

2. The transaction must have a signature matching the owner of the input for every input

3. The total value of the inputs must equal or exceed the total value of the outputs

UTXO - Advantages
Simplicity. Spending a UTXO is all or nothing. Since UTXOs are uniquely referenced and
completely consumed upon spending, there is no chance for a transaction to be replayed.

Transactions can be trivially verified in parallel. It is impossible for two transactions to affect
the same UTXO. This is due to the stateless nature of UTXO transactions. Transactions do not
refer to any input outside of the UTXOs consumed and corresponding signatures.

Privacy preserving behavior is encouraged in the UTXO model. Users are encouraged to
generate a new address for every incoming transaction including change addresses. By using
a new address each time, it is difficult to definitively link different coins to a single owner.

UTXO – Weaknesses
Since there is no concept of an account within Bitcoin, it is up to the wallet provider to
manage a potential set of addresses and sum the corresponding balances.

Some complex logic can not be realized, and the programmability is poor. For complex logic
or contracts requiring state preservation, it is difficult to implement, and the utilization of
state space is relatively low.

When there are more Inputs, there will be more validation. Signature itself consumes CPU
and storage space.

Account-Based Model
State stores a list of accounts where each account has a balance, as well as Ethereum-
specific data (code and internal storage).

A transaction is valid if the sending account has enough balance to pay for it.

If the receiving account has code, the code runs, and internal storage may also be changed,
or the code may even create additional messages to other accounts which lead to further
debits and credits.

Account-
Based
Model

Account-Based Model - Advantages
Large space savings: if an account has 5 UTXO, then switching from a UTXO model to an
account model would reduce the space requirements from

(20 + 32 + 8) * 5 = 300 bytes (20 for the address, 32 for the txid and 8 for the value)

to

20 + 8 + 2 = 30 bytes (20 for the address, 8 for the value, 2 for a nonce).

In reality savings are not nearly this massive because accounts need to be stored in a Patricia
tree but they are nevertheless large.

Additionally, transactions can be smaller (eg. 100 bytes in Ethereum vs. 200-250 bytes in
Bitcoin) because every transaction need only make one reference and one signature and
produces one output.

Account-Based Model - Advantages
Greater fungibility: since there is no blockchain-level concept of the source of a specific set
of coins, it becomes less practical, both technically and legally, to institute a
redlist/blacklisting scheme and to draw a distinction between coins depending on where
they come from.

Simplicity: easier to code and understand, especially once more complex scripts become
involved.

Constant light client reference: light clients can at any point access all data related to an
account by scanning down the state tree in a specific direction.

Account-Based Model - Weaknesses
In order to prevent replay attacks, every transaction must have a “nonce”.

An account keeps track of the nonces used and only accepts a transaction if its nonce is 1
after the last nonce used.

This means that even no-longer-used accounts can never be pruned from the account state.

Tries in Ethereum
All of the merkle tries in Ethereum use a Merkle Patricia Trie. Merkle Patricia Trie is a data structure that stores key-value pairs, just like
a map. It combines the properties of three foundational structures:

1. Trie (Prefix Tree): A tree-like structure used for efficient key-value retrieval, leveraging common prefixes.

2. Radix Trie: Optimizes space usage by compressing nodes with single-child paths, reducing the overhead of storage and lookup
operations.

3. Merkle Tree: Integrates cryptographic hashing, enabling succinct proofs of existence or inclusion, enhancing security and
integrity.

The resulting hybrid, the Merkle Patricia Trie, provides an optimized balance of storage efficiency, verification speed, cryptographic
integrity, and decentralized consensus. From a block header there are 3 roots from 3 of these tries.

1. stateRoot

2. transactionsRoot

3. receiptsRoot

State Trie
There is one global state trie, and it updates over time. In it, a path is
always: sha3(ethereumAddress) and a value is always:
rlp(ethereumAccount)

More specifically an ethereum account is a 4 item array of

[nonce, balance, storageRoot, codeHash]

storageRoot is the root of another patricia trie.

Storage Trie
Storage trie is where all contract data
lives.

There is a separate storage trie for
each account.

To calculate a ‘path’ in this trie first
understand how solidity organizes a
variable’s position. (more info)

https://eth.wiki/json-rpc/API#eth_getstorageat

Transactions Trie
There is a separate transactions trie for every
block.

A path here is: rlp(transactionIndex).

transactionIndex is its index within the block it’s
mined.

The ordering is mostly decided by a miner so this
data is unknown until mined.

After a block is mined, the transaction trie never
updates.

Receipts Trie
Every block has its own Receipts trie.

A path here is: rlp(transactionIndex)

transactionIndex is its index within
the block it’s mined.

After a block is mined, the Receipts
trie never updates.

 This is a field transaction receipt

Radix tree
Every node looks as follows:

[i0, i1 ... in, value]

i0 ... in represent the symbols of the alphabet (often binary or hex)

value is the terminal value at the node

Values in i0 ... in slots are either NULL or pointers to (in our case,
hashes of) other nodes.

Radix tree

[i0, i1 ... in, value]

Example: find the value currently mapped to “dog” in the trie

1. Convert dog into letters of the alphabet (giving 64 6f 67)

2. Descend down the trie following that path until at the end of the path you read the value.

3. Once you followed the path: root -> 6 -> 4 -> 6 -> 15 -> 6 -> 7, you look up the value of the

node that you have and return the result.

Radix tree
Radix tries have one major limitation: they are
inefficient.

If you want to store just one (path,value) binding
where the path is (in the case of the ethereum
state trie), 64 characters long, you will need over
a kilobyte of extra space to store one level per
character, and each lookup or delete will take the
full 64 steps.

The Patricia trie introduced solves this issue.

Merkle-Patricia trie

Merkle Patricia tries solve the inefficiency issue by adding some extra complexity to the

data structure.

A node in a Merkle Patricia trie is one of the following:

1. NULL (represented as the empty string)

2. branch A 17-item node [v0 ... v15, vt]

3. leaf A 2-item node [encodedPath, value]

4. extension A 2-item node [encodedPath, key]

Merkle-Patricia trie
1. NULL (represented as the empty string)

2. branch A 17-item node [v0 ... v15, vt]

3. leaf A 2-item node [encodedPath, value]

4. extension A 2-item node [encodedPath, key]

An extension node of the form [encodedPath, key] can shortcut the descent, where encodedPath
contains the “partial path” to skip ahead, and the key is for the next db lookup.

In a leaf node, the situation above occurs and also the “partial path” to skip ahead completes the full
remainder of a path. In this case value is the target value itself.

Merkle-Patricia trie

Merkle tree

Merkle-Patricia trie

	Διαφάνεια 1: UTXO vs Account Based Model
	Διαφάνεια 2: UTXO
	Διαφάνεια 3: UTXO
	Διαφάνεια 4: UTXO
	Διαφάνεια 5: UTXO
	Διαφάνεια 6: UTXO - Validity Constraints
	Διαφάνεια 7: UTXO - Advantages
	Διαφάνεια 8: UTXO – Weaknesses
	Διαφάνεια 9: Account-Based Model
	Διαφάνεια 10: Account-Based Model
	Διαφάνεια 11: Account-Based Model - Advantages
	Διαφάνεια 12: Account-Based Model - Advantages
	Διαφάνεια 13: Account-Based Model - Weaknesses
	Διαφάνεια 14: Tries in Ethereum
	Διαφάνεια 15: State Trie
	Διαφάνεια 16: Storage Trie
	Διαφάνεια 17: Transactions Trie
	Διαφάνεια 18: Receipts Trie
	Διαφάνεια 19: Radix tree
	Διαφάνεια 20: Radix tree
	Διαφάνεια 21: Radix tree
	Διαφάνεια 22: Merkle-Patricia trie
	Διαφάνεια 23: Merkle-Patricia trie
	Διαφάνεια 24: Merkle-Patricia trie
	Διαφάνεια 25: Merkle tree
	Διαφάνεια 26: Merkle-Patricia trie

