
Cryptography &
Cryptocurrencies

Contents
Crypto background
◦ Hash functions
◦ Digital signatures
◦ Applications

Introduction to cryptocurrencies
◦ Basic digital cash

Cryptocurrencies
Cryptography is used to:

provide a mechanism for securely encoding the rules of a cryptocurrency system in the
system itself.

prevent tampering and equivocation.

encode the rules for creation of new units of the currency into a mathematical protocol.

Cryptographic Hash Functions
Hash function:
◦ Takes any string as input
◦ Produces a fixed-size output
◦ Is efficiently computable (running time that is O(n))

Properties of a cryptographically secure hash function:
◦ Collision-resistance
◦ Hiding
◦ Puzzle-friendly

Property 1: Collision-resistance

It is infeasible to find two values, x and y ,
such that:

x ≠ y , yet H(x) = H(y) .

…but collisions exist

Finding a collision
pick 2256 + 1 distinct values and compute the hashes of each of them.

In fact, if we randomly choose just 2130 + 1 inputs, it turns out there’s a 99.8% chance that at
least two of them are going to collide.

We can find a collision by only examining roughly the square root of the number of possible
outputs.

…but
It takes a very, very long time to find a collision with this generic collision detection algorithm.

For 256-bit output compute the hash function
2256 + 1 times in the worst case
2128 times on average

If a computer calculates 10,000 hashes per second, it would take more than one octillion (1027) years
to calculate 2128 hashes!

If every computer ever made by humanity was computing since the beginning of the entire universe,
up to now, the odds that they would have found a collision is still infinitesimally small

Non-generic collision detection
H(x) = x mod 2256

üaccepts inputs of any length

üreturns a fixed sized output (256 bits)

üis efficiently computable

But this function also has an efficient method for finding a collision.

check the function here

https://www.wolframalpha.com/input/?i=x+mod2%5e256

Collision resistance
There are no hash functions proven to be collision-resistant.

We use hash functions that people have not yet succeeded on finding collisions.

MD5 is not one of them anymore!

Application: Hash as message digests
If we know H(x) = H(y), it is safe to assume that x =y

SecureBox: allows users to upload files and ensure their integrity when they download
them.

Verify downloads on the internet, example

https://ubuntu.com/download/desktop/thank-you?version=20.04.2.0&architecture=amd64

Property 2: Hiding
Given H(x), it is infeasible to find x

it needs to be the case that there’s no value of x which is particularly likely

H(“heads”)

H(“tails”)

Easy to find x

Property 2: Hiding
x has to be chosen from a set that’s very spread out

Solution: we can hide an input that’s not spread out by concatenating it with another input
that is spread out.

A hash function H is hiding if: when a secret value r is chosen from a probability distribution
that has high min-entropy , then given H(r ‖ x) it is infeasible to find x.

High min-entropy: no particular value is chosen with more than negligible probability.

Application: Commitments
com := commit(msg, nonce) publish com

verify(com, msg, nonce) publish msg and nonce
◦ true if com == commit(msg , nonce)
◦ false otherwise

Security properties:

Hiding: Given com, infeasible to find msg

Binding: Infeasible to find msg != msg’ such that
commit(msg,nonce)==commit(msg’,nonce’)

Application: Commitments
Implementation:

commit(msg, nonce) := H(nonce ‖ msg) where nonce is a random 256-bit value

Hiding : Given H(nonce ‖ msg) , it is infeasible to find msg

Binding : It is infeasible to find two pairs (msg, nonce) and (msg’, nonce’) such that msg ≠
msg’ and H(nonce ‖ msg) == H(nonce’ ‖ msg’)

Property 3: Puzzle friendliness
For every possible n-bit output value y ,

if k is chosen from a distribution with high min-entropy,

then it is infeasible to find x such that H(k ‖ x) = y

If someone wants to target the hash function to come out to some particular output value y
, that if there’s part of the input that is chosen in a suitably randomized way, it’s very difficult
to find another value that hits exactly that target.

Application: Search puzzle
Search puzzle. A search puzzle consists of

a hash function, H ,

a value, id (which we call the puzzle-ID), chosen from a high min-entropy distribution

and a target set Y

A solution to this puzzle is a value, x , such that

H(id ‖ x) ∈ Y .

Application: Search puzzle
If Y is the set of all n-bit strings the puzzle is trivial.

If Y has only 1 element the puzzle is maximally hard.

If a search puzzle is puzzle-friendly,

there’s no solving strategy for this puzzle which is much better

than just trying random values of x .

Important in mining!

SHA-256 hash
function

We require that our hash
functions work on inputs of
arbitrary length.

Merkle-Damgard transform:
convert a hash function that
works on fixed-length inputs
into a hash function that
works on arbitrary-length
inputs

SHA-256 hash
function

Theorem: if c is collision-
resistant, then SHA-256 is
collision-resistant

Hash Pointers and Data Structures
A hash pointer is:

a pointer to where some information is stored and

a cryptographic hash of the information.

A regular pointer gives you a way to retrieve the
information

a hash pointer also gives you a way to verify that the
information hasn’t changed.

Hash Pointers and Data Structures
We can use hash pointers to build all kinds of data
structures.

◦ linked list
◦ binary search trees

A block chain is a linked list that is built with hash pointers
instead of pointers.

Merkle-Damgard

construction

Hash Pointers
and Data
Structures

A use case for a block chain is
a tamper-evident log.

A log data structure that
stores a bunch of data, and
allows us to append data onto
the end of the log.

Merkle trees

Merkle trees - Proof of Membership
Someone wants to prove that a certain data block is a
member of the Merkle Tree.

Only about log(n) items need to be shown.

It takes about log(n) time for us to verify it.

Merkle trees - Proof of non-Membership
With a sorted Merkle tree, it becomes possible to verify non-membership in a logarithmic time and
space.

Show a path to the item that’s just before where the item in question would be.

Show the path to the item that is just after where it would be.

If these two items are consecutive in the tree, then this serves as a proof that the item in question is
not included.

We can use hash pointers in any pointer-based data structure that has no cycles.

Digital Signatures
A digital signature is supposed to be the digital analog to a handwritten signature on paper.

Its properties:

1. Only you can make your signature, but anyone who sees it can verify that it’s valid.

2. The signature is tied to a particular document so that the signature cannot be used to
indicate your agreement or endorsement of a different document.

API for Digital Signatures
(sk, pk) := generateKeys(keysize)

sig := sign(sk , message)

isValid := verify(pk , message , sig)

Properties of Digital Signatures
Valid signatures must verify

verify (pk , message , sign (sk , message)) == true

Signatures are existentially unforgeable, it’s computationally infeasible to forge signatures.
An adversary who:
◦ knows your public key
◦ gets to see your signatures on some other messages

can’t forge your signature on a new message

The unforgeability game

Practical Concerns
Algorithms are randomized

we need good source of randomness

Limit on the message size

use Hash(message) rather than message

A trick: signing the hash pointer the signature covers that whole structure.

Digital Signatures
Bitcoin uses a particular digital signature scheme that’s called the Elliptic Curve Digital
Signature Algorithm (ECDSA).

A U.S. government standard.

Bitcoin uses ECDSA over the standard elliptic curve “secp256k1” which is estimated to
provide 128 bits of security.

it is as difficult to break this algorithm as performing 2128 symmetric-key
cryptographic operations

Public Keys as Identities
If you see a message with a signature that verifies correctly under a public key, pk , then you
can think of this as pk is saying the message.

In order for someone to speak for the identity pk , they must know the corresponding
secret key, sk .

How to Make a New Identity
Create a new, random key-pair (sk,pk)
◦ pk is the public “name” you can use
◦ sk lets you “speak for” this new identity

You control the identity, because only you know the sk.

Decentralized Identity Management
Anybody can make a new identity at any time,

you can make as many as you want!

There is no central point of coordination.

These identities are called “addresses” in Bitcoin.

A Simple Cryptocurrency – The
GoofyCoin

A Simple Cryptocurrency – The
GoofyCoin

A Simple Cryptocurrency – The
GoofyCoin

A Simple Cryptocurrency – The
GoofyCoin

A Simple Cryptocurrency – The
GoofyCoin

Double Spending Attack!

A Simple Cryptocurrency – The
ScroogeCoin

A Simple Cryptocurrency – The
ScroogeCoin

CreateCoins transaction creates new coins

A Simple Cryptocurrency – The
ScroogeCoin

A Simple Cryptocurrency – The
ScroogeCoin

Immutable coins.

Coins cannot be transferred, subdivided or combined.

Same effect by:
◦ Create new transactions
◦ Consume your coin
◦ Pay out two new coins to yourself

A Simple Cryptocurrency – The
ScroogeCoin

A Simple Cryptocurrency – The
ScroogeCoin

The problems to be solved:

Users must agree upon a single published block chain as the history of which transactions have
happened.

They must all agree on which transactions are valid, and which transactions have actually
occurred.

They also need to be able to assign IDs to things in a decentralized way.

The minting of new coins needs to be controlled in a decentralized way.

Note: most of the slides used in this course are
derived from those available for the book “Bitcoins
and Cryptocurrencies Technologies – A
Comprehensive Introduction”, Arvind Narayanan,
Joseph Bonneau, Edward Felten, Andrew Miller &
Steven Goldfeder, 2016, Princeton University Press.

CS 4593/6463 – Bitcoins and Cryptocurrencies, Prof. Murtuza
Jadliwala, University of Texas, San Antonio

References

